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The Generative Model Era

“Generative Model” = Statistical Modeling + Neural Network Architecture 3

[Wei et al.]

[Brooks, Peebles et al.]

[Vaswani et al.]



Why Algorithmic Modeling Research
• Traditional probabilistic ML focuses too much on structure of 

independence. 

• To build powerful statistical models, we need algorithmic 
structure (architecture) that captures complex dependencies. 

• Current algorithmic model development mostly by trial and error
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Sequence Modeling Setup

• Simple abstraction but very general 
• Key challenge: A sequence model should capture potentially long range 

dependencies.
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Capturing Long Range Dependencies
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Transformers: Brute force enumerationRNNs: Keep a memory of the past

Complicated sequential dependencies 
in computation

https://pylessons.com/transformer-attention
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https://www.isattentionallyouneed.com/

Attention is All You Need?
Pros 
• Numerous empirical successes 
• Suited for massively parallel computation

Cons 
• Quadratic complexity in length—limiting further scaling 
• Needs ad-hoc fix for dense input: audio, image, video, long text
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[Dosovitskiy et al.] [Child et al.] [Dao et al.]



Resurgence of RNNs

S4: Explicitly Unroll Linear RNNs  
 Convolutions→

Gu et al. (2021). Efficiently modeling long sequences with structured state spaces. 
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Resurgence of RNNs

Why convolutions are great:

● Avoid sequential computations, highly parallelizable 
● Scale sub-quadratically with length 

Weaknesses of state space-unrolled convolution (e.g., Gu et al., 22, Smith et al. 
22, Li et al., 23):

● Kernel as long as input 
● Requires complex parameterization schemes and FFT (or parallel scan) 
● Specialized initialization such as HiPPO

Gu et al. (2021). Efficiently modeling long sequences with structured state spaces.  
Li et al. (2022). What makes convolutional models great on long sequence modeling?


Smith et al. (2022). Simplified state space layers for sequence modeling.
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Wavelets and Multiresolution Analysis

̂f (0)(t) = a00 ⋅ ϕ(t)

̂f (1)(t) = a10 ⋅ 21/2ϕ(2t) + a11 ⋅ 21/2ϕ(2t − 1)

̂f (2)(t) = a20 ⋅ 2ϕ(4t) + a21 ⋅ 2ϕ(4t − 1) + a22 ⋅ 2ϕ(4t − 2) + a23 ⋅ 2ϕ(4t − 3)

t : 0 1
ϕ(t) = 1(0 ≤ t < 1)
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Wavelets and Multiresolution Analysis

t : 0 1
ϕ(t) = 1(0 ≤ t < 1)

̂f ( j)(t) = ∑
k∈ℤ

aj,kϕj,k(t),

aj,k = ⟨ f, ϕj,k⟩

• Represent  by the vector  for a sufficiently large  

• Problem: Each feature  may be too local to be representative

f {aj,k}k∈ℤ j

aj,k 11



Wavelets and Multiresolution Analysis

V0
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W2

V3

Increasing resolution 12



Wavelets and Multiresolution Analysis

aj(n) ≜ aj,n =
K−1

∑
k=0

aj+1(2n + k)h0(k),

bj(n) ≜ bj,n =
K−1

∑
k=0

aj+1(2n + k)h1(k) .

f (J )(t) = ∑
k∈ℤ

a0kϕ0,k(t) +
J−1

∑
j=0

∑
k∈ℤ

bj,kψj,k(t)

A multiresolution representation of  can 
be computed as:

f(t)

where 

Discrete Wavelet Transform (DWT) 13



A Wavelet Memory
• Memorize the history up to time t

at
0, bt

0:J−1 = DWT(x(0 : t), h0, h1)

• Forgetting: Drop fine details in the past

bt
j,< f( j) = 0

̂x(s) = ⟨w, (at
0, bt

0:J−1)⟩ where w = (ϕ(s), ψ0,0(s), ψ1,0(s), ψ1,1(s), ⋯)
• Retrieve data from a past time s
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Multiresolution Convolutional Memory

• The output ( ) at step  is generated from a multiresolution convolutional memory . 
• Architectures with larger kernel sizes can be derived from Daubechies wavelets.

𝒚𝑛 𝑛 𝒛𝑛

Li
ne

ar

Repeat for 𝑛 = 0, 1, …,  𝑁 − 1
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Fixed depth— At most—

Fast Implementation as Causal Dilated Convolutions

• Principled justification of WaveNet*-style causal dilated convolutions 
• Differences (suggested improvements) 

• Explicit memory construction 
• Filter sharing for all timescales 
• No nonlinearities across timescales

O(N log N )O(N )Complexity:

*van den Oord et al. (2016). WaveNet: A generative model for raw audio
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 Autoregressive SamplingO(1)

At each scale, maintain a queue of size (kernel size - 1) x dilation
17



Our layer is linear and parameter efficient, thus straightforward to 
integrate into residual blocks and stack into deep architectures.

Deep Learning with MultiresConv

Benchmark: Pixel-level Image Classification (Sequential CIFAR-10)

Outperforming prior ConvNets by >10pps1.4M Params

Better than a 5x larger S47.9M Params
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Ablations on Cross-Layer Filter Sharing

Tied Untied

SCIFAR 93.15% 92.16%

Long ListOps 62.75% 61.85%
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More Results
Syntax Reasoning (Long ListOps)


First competitive small-kernel ConvNets*
Autoregressive Generative Modeling (CIFAR-10)


The best method without 2D bias

*State-space models (S4, SGConv, etc.) can be equivalently represented as convolutions with an input-length kernel. However, these models rely on sophisticated parameterization 
& initialization techniques.  
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Implementation in 15 Lines of Code
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Takeways

● It’s possible to “derive” a performant neural network architecture. 

● A new sequence modeling layer grounded in wavelet theory. 

● Simple and parameter efficient


● Implemented with small-kernel convolutions 
● No specialised init or parameterization schemes, nor FFT 

● Strong performance: Remains SOTA on long sequence modeling benchmark
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Future Work

● Is the layer a universal sequence function approximator? 

● MultiresConv for 2D, 3D and general discrete topologies 

● Continuous MultiresConv 

● Large-scale MultiresConv generative models

23



Thanks
Paper: Sequence Modeling with Multiresolution Convolutional Memory

Code: github.com/thjashin/multires-conv

Contact: ishijiaxin@gmail.com

Collaborators:

Alex Wang Emily Fox
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http://github.com/thjashin/multires-conv
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