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Unsupervised Learning is Efficient Learning
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Cake: unsupervised learning

(Millions of bits per sample)

Icing: supervised learning

(10 bits per sample)

Yann LeCun’s Cake Analogy



Progress has been 
made. Yet we have not 
reached a consensus on


• the goal for unsupervised learning


• which learning rule leads to 
intelligence
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Figure credit: Ian Goodfellow 

AI generated face images
https://paperswithcode.com/sota/self-supervised-image-
classification-on

Representation learning performance on ImageNet



An Extreme Example
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Generative ModelingSpectral Methods

usually nonparametric,

no distributional assump. usually parametric

Learn eigenfunctions Estimate densities

Ku = λu
𝔼x′￼∼p[k(x, x′￼)ψ(x′￼)] = λψ(x) min D(pmodel∥pdata)

VAE, Normalizing Flow, GAN, EBM, 
https://openai.com/blog/generative-models/



Outline
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Representation Learning
(Self-Supervised Learning)

Spectral Methods Generative ModelsSpectral Representation 
of Density Gradients

Score-based Modeling

（Score)∇log p(X)

①



Why Care About Density Gradients （Score）∇log p(X)
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[Li & Turner, 17; Hjelm et al., 19; Tschannen et al., 19; Wen et al., 20]

= 𝔼X∼PX
[∇Y log pX,Y ∇ϕgϕ(X)] − 𝔼X∼PX

[∇log pY ∇ϕgϕ(X)]∇ϕI(X; Y)

• It contains all information about the data distribution


     (Langevin diffusion)dXt = ∇log p(Xt) dt + 2dBt

• In many learning problems, this is the only quantity related to the data distribution 
that needs to be calculated, such as mutual information-based learning

• Free of normalization, so easier to model than the distribution itself

https://scholar.google.com/citations?user=TSj_8nYAAAAJ&hl=en&oi=sra


Spectral Methods for Estimating Density Gradients

8
Shi, Sun & Zhu. A spectral approach to gradient estimation for implicit distributions. ICML 2018

Zhou, Shi & Zhu. Nonparametric score estimators. ICML 2020

∇xlog q(x){xj}M
j=1

i.i.d.∼ q (unknown)q(x)
Score function

(Score Estimation)



∇xlog q(x) = − ∑
j≥1

𝔼q [∇ψj(x)]ψj(x)

S, Sun & Zhu, ICML’18

9Shi, Sun & Zhu. A spectral approach to gradient estimation for implicit distributions. ICML 2018

density gradients (score)  eigenfunction

Eigenfunctions of 1d 
Gaussian kernel

𝔼x′￼∼q[k(x, x′￼)ψj(x′￼)] = λjψj(x)

Eigenfunctions  form a basis of the function space {ψj}j≥1

Spectral Methods for Estimating Density Gradients
(Score Estimation)



Application: Mutual Information Gradient Estimation 
for Representation Learning
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[Wen et al., ICLR’20]

Used in winning solution of NeurIPS 2021 BEETL Competition: Benchmarks for EEG Transfer Learning 

X ∼ PX

Y

representation Encoder gϕ

learn by maximizing mutual information
I(X, Y)



Key Insight：Stein’s Lemma
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⟨∇log q, ψj⟩L2(q) = − 𝔼q[∇ψj(x)]

• Introduced by Stein (1972) for characterizing distributional convergence. 


• The identity he studied for normal distribution :


    for   

x ∼ N(0,σ2)

𝔼[xh(x)] = σ2𝔼[h′￼(x)] x ∼ N(0,σ2)



Outline
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②

Representation Learning
(Self-Supervised Learning)

Spectral Methods Generative ModelsSpectral Representation 
of Density Gradients

Score-based Modeling

（Score)∇log p(X)



• Let data distribution, model distribution, minimize |LHS| 
Result: Fit generative model to data 
Question: How to choose ?

q← p←

h

Stein’s Lemma as a Learning Rule 

𝔼q[h(x)⊤ ∇log p(x)+∇ ⋅ h(x)] = 0 for any suitable  if  h q = p



14

min
θ

|𝔼q[h(x)⊤ ∇xlog pθ(x)+∇ ⋅ h(x)] |

Data distribution Model distribution

?

Model fitting:

Stein’s Lemma as a Learning Rule 



→ min
θ

𝔼qdata
[∥∇log pθ(x) − ∇log qdata(x)∥2]
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min
θ

sup
∥h∥L2(q)≤C

|𝔼q[h(x)⊤ ∇xlog pθ(x)+∇ ⋅ h(x)] |

Data distribution Model distribution

Score Matching [Hyvärinen, 2005]

Model fitting:

−



Training Energy-Based Models
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Key insight: The score does not depend on 
normalizing constant Zθ

∇xlog pθ(x) = − ∇Eθ(x) + ∇xlog Zθ

pθ(x) =
e−Eθ(x)

Zθ

• Score Matching is more suitable for training 
such models than maximum likelihood!x Eθ(x)

Song*, Garg*, Shi & Ermon. Sliced score matching: A scalable approach to density and score estimation. UAI 2019

Time Performance

Sliced Score Matching
[Song*, Garg*, S & Ermon, UAI’19]



Score-Based Modeling
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Idea: Model the score  instead of the density


Advantages:


1. less computation than energy-based modeling


2. enable more flexible models

s := ∇log p

min
s∈ℋ

𝔼qdata
∥s(x) − ∇log qdata(x)∥2 +

λ
2

∥s∥2
ℋ

Nonparametric Score Model Score Network

min
θ

𝔼qdata
∥sθ(x) − ∇log qdata(x)∥2The spectral estimator (Shi et al., 18)


is a special case.

x sθ(x) ≈ ∇log qdata(x)

Use neural networks to model score，
trained by sliced score matching

Song*, Garg*, Shi & Ermon. Sliced score matching: A scalable approach to density and score estimation. UAI 2019
Zhou, Shi & Zhu. Nonparametric score estimators. ICML 2020

Song*, Garg*, S & Ermon, UAI’19; Zhou, S & Zhu, ICML’20



From Score Networks to Diffusion Models
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[Song et al., ICLR’20]

Images created by OpenAI’s DALLE-2. 
DALLE-2 is based on diffusion models.

Updates produced by score networks transform  
noise to data



Challenge: Discrete Domains
• No continuous density; scores won’t exist.
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Molecules Natural Language

Computer Programs Choices & Decision



Generalize into Discrete Domains
Shi et al., NeurIPS’22
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Stein’s method

Score-based modeling

What Stein’s method really means: 

The formula


 


is the change rate of  at  
when  follows the Langevin diffusion 
of 

∇f(x)⊤ ∇log p(x) + ∇ ⋅ (∇f(x))

𝔼[ f(xt)] xt = x
xt

p

Discrete state-space 
Markov chainsLangevin diffusion

?

?

Shi, Zhou, Hwang, Titsias & Mackey. Gradient estimation with discrete Stein operators, NeurIPS 2022 Outstanding Paper Award.



Discrete Stein Operators
Shi et al., NeurIPS’22

 21Shi, Zhou, Hwang, Titsias & Mackey. Gradient estimation with discrete Stein operators, NeurIPS 2022 Outstanding Paper Award.

Applications 

• Learning discrete energy-based/diffusion models


• Gradient estimation for discrete optimization:  
discrete latent-variable models, combinatorial optimization, reinforcement learning, etc. 

min
h

Var( ̂g(x) + (Ah)(x))

Discrete state-space 
Markov chains

Stein operator

Birth-death

Barker

MPF

Gibbs Eq[(Ah)(x)] = 0

Stochastic gradients



Learning discrete representation with VAEs, 200 latent dimensions

SOTA Gradient Estimators for Learning Discrete 
Latent-Variable Models
via discrete Stein operators (Shi et al., NeurIPS’22)
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DisARM (Dong et al., 20)

Ours

Variance of gradient estimates Training objective

Shi, Zhou, Hwang, Titsias & Mackey. Gradient estimation with discrete Stein operators, NeurIPS 2022 Outstanding Paper Award.



Outline
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③

Representation Learning
(Self-Supervised Learning)

Spectral Methods Generative ModelsSpectral Representation 
of Density Gradients

Score-based Modeling

（Score)∇log p(X)



• Scaling is a problem for nonparametric methods


• Nonparametric methods do not leverage inductive bias such as equivariance


Probably the reason why spectral learning are less used today even if they seem to 
capture more information than generative modelling. 

24

A Parametric Approach to Spectral Learning?

ψj(x)
Eigenfunction  

∇log p(x)
Score



NeuralEF：Learning Neural Eigenfunctions
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• Can be seen as a function-space extension to EigenGame (Gemp et al., 2020)

Deng, Shi & Zhu. NeuralEF: Deconstructing kernels by deep neural networks. ICML 2022

Deng, S & Zhu, ICML’22

• NeuralEF:

max
ψj

Rjj −
j−1

∑
i=1

R2
ij

Rii
s . t . 𝔼[ψj(x)2] = 1, j = 1,…, J

Rij = 𝔼[ψi(x)k(x, x′￼)ψj(x′￼)]
L2-BatchNorm



Neural Eigenmaps
Eigenfunctions are strong self-supervised learners

26Deng*, Shi*, Zhang, Cui, Lu & Zhu. Neural Eigenfunctions Are Structured Representation Learners. arXiv:2210.12637, 2022.

ImageNet Top-1 accuracies of linear classifiers trained on neural 
eigenfunction outputs (100 epoch results).

: data augmentationp(x |z)κ(x, x′￼) =
Ep(z)[p(x |z)p(x′￼|z)]

p(x)p(x′￼) [HaoChen et al., 2021; Johnson et al., 2022]



Neural Eigenmaps
Deng*, S* et al., 2022

27Deng*, Shi*, Zhang, Cui, Lu & Zhu. Neural Eigenfunctions Are Structured Representation Learners. arXiv:2210.12637, 2022.
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d=4

d=8

d=16

d=32

Query | Retrieval Results

d=64

• Structured representations—
features are ordered by importance


• Can be used as adaptive-length 
codes in image retrieval systems

Maintaining similar retrieval performance as leading SSL methods after truncating up to 94% of the 
representation length



28Deng*, Shi*, Zhang, Cui, Lu & Zhu. Neural Eigenfunctions Are Structured Representation Learners. arXiv:2210.12637, 2022.

Self-Supervised Learning Neural Eigenmap (Ours)

Empirical Covariance of

 and  g(X; θ) g(X+; θ)

g(X+; θ)NNX+

g(X; θ)X NN

converges to ordered eigenfunctions

g(X; θ)NNX

𝚂𝙶(g(X+; θ))
stop_gradient

X+ NN

 and  are positive pairsX X+

↑↓Training obj: ↑↓Training obj:

Neural Eigenmaps: Algorithm



Takeaways
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k(x, x′￼)

x1, …, xn ∼ p
+

ψj(x)
Eigenfunction  

 (data distribution)

∇log p(x)
Score

Score-based modelling

• Replacing nonparametric methods with a deep functional representation is fruitful. 


• The underlying principle (Stein’s method) can be generalized to discrete domains. 



Open Questions

• To what extent can spectral methods explain cross-domain self-supervised 
learning (e.g., CLIP)?


• Will generative modelling and representation learning eventually converge to a 
single method?
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Thanks!
Collaborators: Jun Zhu, Lester Mackey, Michalis K. Titsias, Shengyang Sun, Yang Song, Yuhao Zhou, 
Jessica Hwang, Chang Liu, Zhijie Deng
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